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Optics of Layered Materials Objectives 

• Thickness of thin films can be determined:  
• Reflectance – optical penetration depths 

• Ellipsometry 

 

• Read band diagrams 
• Optics probes certain parts of the diagram 

• Recognize optical properties of direct and indirect bandgap 

 

• Know which experimental technique to use to detect quasiparticles and measure 
their properties 
• Exciton/Biexciton/Trion luminescence/absorption 

• Time Evolution/Pump Probe 

• Phonon Raman 
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Incident Light 

•Transmission 

•Reflection 

•Absorption 

 

I(z)=I0e-αz 
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http://www.pveducation.org/pvcdrom/materials/optical-properties-of-silicon 



Reflectivity:  Newton’s Fringes 
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SPIE Field Guide to Interferometric Optical Testing, http://www.sladecek.org/NRS/node14.html 

Can use the wave nature of light to determine thickness 

http://www.whoi.edu/oilinocean 



Differences in Reflectance Show Up in Single Layers 
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D.I.Y. Graphene: How to Make One-
Atom-Thick Carbon Layers With Sticky 
Tape 
Scientific American 



Polarization 
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https://en.wikipedia.org/wiki/Polarized_3D_system 

Direction of the electric field in the electromagnetic wave 
Mathematically akin to spin (think Bloch sphere) 
Simple examples 
• Linear polarization 
• Circular polarization 
• Random polarization 



Reflectivity Versus Angle of Incidence: Insulator 
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Reflectivity is wavelength dependent 
Fused Silica  RP Photonics Encyclopedia 

S and P Polarization 

Edmundoptics.com 

Rnorm=[(n-1)/(n+1)]2 



Ellipsometry 
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https://en.wikipedia.org/wiki/Ellipsometry 

Can determine complex dielectric constant 
from thickness OR thickness from complex 
dielectric constant 



Why is reflectivity important? 

•Tells us how light couples into a material (p 
typically absorbed more than s) 
 
•Reveals refractive index  Rnorm=[(n-1)/(n+1)]2    
Dielectric Constant 
 

•Reduced by transitions between states 

•Transmission 
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Bands 

One Atom  Two Atoms  Four Atoms Many Atoms 

Energy 

Atomic interactions shift energy levels when there are several atoms 

Levels        Bands 

Valence 

Conduction 

Gap 
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Second Conduction 
Band 



Bands:  Three Kinds of 
Electronic Materials 

Bandgap determines 
conductivity and optical 
spectrum 



Definitions 
• Conductor:  Fermi level is in a band 

• Semiconductor:  Fermi level is in the gap between bands 

• Bandgap:  range with no states between bands in a 
semiconductor 
• Bandgap adjusts conductivity 

• Conductivity is complicated 

• HOMO=Valence 
• HOMO=Highest Occupied Molecular Orbital 

• LUMO=Conduction 
• LUMO=Lowest Unoccupied Molecular Orbital 
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Usually we talk about conduction and 
valence because other bands are hard to 
access 
 
Monolayers have fewer states in each 
band 
 
Laszlo’s Speculation:  Higher and lower 
lying bands are easier to study and more 
important in monolayers 13 



Conservation Laws and Dispersion 
• Conservation of energy:  Total energy does not change with time 

• Ein = Eout 

 

• Conservation of momentum:  Total momentum does not change with 
time 
• kin = kout 

 

 

• Dispersion:  Energy/momentum relationship for particles 
• Free electron E = ћ2𝒌2/(2𝑚) 
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Dispersion: Energy/Momentum Relationship 

15 Snoke, David. "Spontaneous Bose coherence of excitons and polaritons." Science 298.5597 (2002): 1368-1372. 

ћ2𝒌2/(2𝑚) 
Matter-like 

𝐸 = ћ𝑐|𝒌| 
 

Interaction not 
explained here 

Nothing exists in 
blank areas. 

 
When two 
dispersions cross, 
interactions obey 
energy and 
momentum 
conservation 
 



Band Diagrams vs. Molecular Potential Energy Surfaces 
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http://solarwiki.ucdavis.edu/The_Science_of_Solar/Solar_Basics/C._Semiconductors_and_Solar_Interactions/III._Absorption_of_Li
ght_and_Generation/2._Direct_Semiconductors?sa=X&ved=0CBoQ9QEwAmoVChMIg5u7r5P-xgIViVw-Ch1Ozgqy 

Wavevector 

Energy 

https://en.wikipedia.org/wiki/Molecular_orbital_diagram 



Band Diagrams vs. Molecular Potential Energy Surfaces 

17 http://www.photobiology.info/Photochem.html 

http://solarwiki.ucdavis.edu/The_Science_of_Solar/Solar_Basics/C._Semiconductors_and_Solar_Interactions/III._Absorption_of_Li
ght_and_Generation/2._Direct_Semiconductors?sa=X&ved=0CBoQ9QEwAmoVChMIg5u7r5P-xgIViVw-Ch1Ozgqy 

Wavevector 

Energy 

Vibrational 
States 

Electronically 
excited 
vibrational 
states 



Similarities and Differences:  Molecule/Crystal 

• Similarities 
• Emission at longer wavelength than absorption 
• Energy gaps 
• Absorption can excite electronically and vibrationally 

•Differences 
• More electrons in a crystal 
• Momentum in crystal instead of position in molecule 
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Three parts of band diagrams 
1. Energy 
2. Wavevector 
3. Reciprocal Lattice  

 (X, M, R…) 
Energy level can depend on 
momentum.  A band diagram is 
like an energy level diagram 
which shows momentum 

dependence. 

Tianchao Niu, Ang Li, From two-dimensional materials to 
heterostructures, Surf. Sci. (2015), 90 (1), 25-41, 

Wavevector and Reciprocal Lattice 

Band Diagrams 
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Γ 
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Direct and Indirect Gap 

http://solarwiki.ucdavis.edu/The_Science_of_Solar/Solar_Basics/C._Semiconductors_and_Solar_Interactions/III._Absorption_of_Light_and_Generation/2._Direct_Semiconductors?sa=X&ved=0CBoQ9QEwAmoVChMIg5u7r5P-xgIViVw-Ch1Ozgqy 

Wang, Yanlong, Chunxiao Cong, Weihuang Yang, Jingzhi Shang, Namphung Peimyoo, Yu Chen, Junyong Kang, 
Jianpu Wang, Wei Huang, and Ting Yu. "Strain-induced direct–indirect bandgap transition and phonon 
modulation in monolayer WS2." Nano Research (2015): 1-11. 

WS2 

Wavevector 

Energy 
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Direct and Indirect Gap:  Absorption and 
Luminescence 
 

Wang, Yanlong, Chunxiao Cong, Weihuang Yang, Jingzhi Shang, Namphung Peimyoo, Yu Chen, Junyong Kang, 
Jianpu Wang, Wei Huang, and Ting Yu. "Strain-induced direct–indirect bandgap transition and phonon 
modulation in monolayer WS2." Nano Research (2015): 1-11. 
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Quasiparticles 
• Quantum of Energy in a Crystal 
• Multiple classes of quasiparticles 
• Emergent property of large numbers of atoms 



Quasiparticles Important to Optics 

• Electron – In my opinion it counts as “quasi” when it is interacting with its surroundings.  
Quasiparticle electron mass can be different from free electron mass. 

• Hole (antielectron) 

• Exciton (electron+hole) + sign means particles bound by an attractive force 

• Biexciton (exciton+exciton) 

• Trion (exciton+electron OR exciton+hole) 

• Exciton Polariton (electron+hole+photon) 

• Phonon (sound) 

Some quasiparticles appear in nature, others only appear in man-made 
experiments 
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Exciton States 
• H atom potential. V=-e2/(4πεr)   

 

•  Dielectric environment  Why does salt dissolve in water? 

 

• Only in direct gap semiconductors where conduction maximum and valence 
minimum are at same place in reciprocal lattice 

 

• Two types of exciton:  Frankel or Wannier-Mott 

 

• Exciton structure analogous to hydrogen atom structure 
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Discovery of Excitons 

25 Kazimierczuk, T., D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer. "Giant Rydberg excitons in the copper oxide Cu2O." Nature 514, no. 7522 (2014): 343-347. 

Predicted 1931 Frenkel 
Discovered 1951 E. F. 
Gross in Cuprous Oxide 
 
V=-e2/(4πεr) 
En ∝1/n2 

 
Not generally this simple. 



Signature of an Exciton 
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• Absorption/Luminescence Resonance 

• Below Bandgap 

Mak, Kin Fai, Keliang He, Jie Shan, and Tony F. Heinz. 
"Control of valley polarization in monolayer MoS2 by 
optical helicity." Nature nanotechnology 7, no. 8 (2012): 
494-498. 
 



Excitons, Trions, and Biexcitons From 
Luminescence and Transient Absorption 
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Trion in Molybdenum Disulfide 
Taghinejad, Hossein, Mohammad Taghinejad, Alexey Tarasov, Meng-Yen Tsai, Amir H. 
Hosseinnia, Philip M. Campbell, Ali A. Eftekhar, Eric M. Vogel, and Ali Adibi. "Nonlinear Raman 
Shift Induced by Exciton-to-Trion Transformation in Suspended Trilayer MoS2." arXiv preprint 
arXiv:1502.00593 (2015). 

P
o
w
e
r 

Biexciton on molybdenum disulfide 

Sie, Edbert J., Yi-Hsien Lee, Alex J. Frenzel, Jing Kong, and 
Nuh Gedik. "Biexciton formation in monolayer MoS2 
observed by transient absorption spectroscopy." arXiv 
preprint arXiv:1312.2918 (2013). 

http://spiff.rit.edu/richmond/asras/distance_ii/distance_ii.html 



Excitons, Trions, and Biexcitons From 
Luminescence and Transient Absorption 
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Trion in Molybdenum Disulfide 
Taghinejad, Hossein, Mohammad Taghinejad, Alexey Tarasov, Meng-Yen Tsai, Amir H. 
Hosseinnia, Philip M. Campbell, Ali A. Eftekhar, Eric M. Vogel, and Ali Adibi. "Nonlinear Raman 
Shift Induced by Exciton-to-Trion Transformation in Suspended Trilayer MoS2." arXiv preprint 
arXiv:1502.00593 (2015). 

P
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Biexciton on molybdenum disulfide 

Sie, Edbert J., Yi-Hsien Lee, Alex J. Frenzel, Jing Kong, and 
Nuh Gedik. "Biexciton formation in monolayer MoS2 
observed by transient absorption spectroscopy." arXiv 
preprint arXiv:1312.2918 (2013). 

http://spiff.rit.edu/richmond/asras/distance_ii/distance_ii.html 

We have the tools that were used to discover these particles. 



 Valley Degree of Freedom 
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Exction Wavefunction in Reciprocal Space (DFT) 
Qiu, D. Y., Felipe, H., & Louie, S. G. (2013). Optical spectrum of MoS 2: many-body effects and diversity of exciton states. Physical review letters, 111(21), 216805. 

http://www.qpec.t.u-tokyo.ac.jp/research03-e.html 

Quantum “Valleytronic” Computers? 



Valley Decoherence Measurement by Transient 
Absorption 
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• Decoherence is a challenge for all 
quantum computing schemes 

• Need ideas for how to reduce 
intervalley scattering 

• Transient absorption can measure 
decoherence 

Yan, T., Qiao, X., Tan, P., & Zhang, X. (2015). 
Valley depolarization in monolayer WSe2. 
arXiv preprint arXiv:1502.07088. 
 



What happens after a photon is absorbed by a solid? 

• Metals (no band gap) 
1. Coherent (plasmon) -> dephasing 

2. Hot electron creation 

3. Electron cooling  
1. e-e scattering  

2. e-phonon scattering 

• Semiconductor 
1. Hot electron creation 

2. Electron cooling 
1. e-e scattering 

2. e-phonon scattering 

3. e-h pair formation (exciton formation) 

4. e-h pair recombination/light emission  
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Longitudinal and Transverse Phonons 
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http://images.tutorvista.com/cms/images/39/longitudinal-transverse-waves1.jpg 
http://www.tf.uni-kiel.de/matwis/amat/iss/kap_4/illustr/i4_1_1.html 

• Transverse: atomic motion 
perpendicular to 
wavevector 

• Longitudinal: atomic motion 
parallel to wavevector 

• A video of 
transverse/longitudinal 
behavior can help 

• Velocity depends on 
phonon type 



Phonon Types and Density of States 

33 

Korzhavyi, P. A., & Johansson, B. (2011). Literature 
review on the properties of cuprous oxide Cu 2 O 
and the process of copper oxidation. Swedish 
Nuclear Fuel and Waste Management Co., 
Stockholm (Sweden). 

• Phonons have low energy and huge mass 
• Huge mass because nuclei participate by 

moving 
• Acoustic phonon bands reach zero energy 

• “Regular” sound 
• Atoms move in phase 

• Optical phonon bands do not reach zero 
• Atoms of different types are not in phase 

• If there is more than one type of atom, the 
lighter atoms have higher energy phonon bands 

• Experiments to measure energy/wavevector: 
• Raman scattering near Γ point in phonon 

dispersion because light has low 
momentum 



Light/Phonon Interaction 
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https://en.wikipedia.org/wiki/Raman_spectroscopy 



Raman Scattering:  Phonon/Photon Inelastic Scattering 
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Yu, Yifei, Chun Li, Yi Liu, Liqin Su, Yong Zhang, and Linyou Cao. "Controlled scalable 
synthesis of uniform, high-quality monolayer and few-layer MoS2 films." Scientific reports 
3 (2013). 

Imaging   Scanning Probe   Raman 



Raman Benefits 

• Fast 

•Cost effective 

• Structure specific 

• Space and time resolution 
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Titanium Diselenide Flake 
Karapetrov  Group 



Optics of Layered Materials Objectives 

• Thickness of thin films can be determined:  
• Reflectance 

• Elipsometry 

• Read band diagrams 

• Recognize optical properties of direct and indirect bandgap 

• Know which experimental technique to use to detect quasiparticles and measure 
their properties 
• Exciton/Biexciton/Trion luminescence/absorption 

• Time Evolution/Pump Probe 

• Phonon Raman 
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What could we have discussed but chose not to… 

• Heterostructures 

• Effective masses 

• Harmonic generation and nonlinearities 

• Microscopy 

• Defects and Grains 

• Indirect excitons 

• Plasmons 

• Water 
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Snoke, David. "Spontaneous Bose coherence 

of excitons and polaritons." Science 298.5597 
(2002): 1368-1372. 
 


